42 research outputs found

    Attribute-Based Access Control with Hidden Policies and Hidden Credentials

    Full text link

    The POLIPO Security Framework

    Get PDF
    Systems of systems are dynamic coalitions of distributed, autonomous and heterogeneous systems that collaborate to achieve a common goal. While offering several advantages in terms of scalability and flexibility, the systems of systems paradigm has a significant impact on systems interoperability and on the security requirements of the collaborating systems. In this chapter we introduce POLIPO, a security framework that protects the information exchanged among the systems in a system of systems, while preserving systems’ autonomy and interoperability. Information is protected from unauthorized access and improper modification by combining context-aware access control with trust management. Autonomy and interoperability are enabled by the use of ontology-based services. More precisely, each authority may refer to different ontologies to define the semantics of the terms used in the security policy of the system it governs and to describe domain knowledge and context information. A semantic alignment technique is then employed to map concepts from different ontologies and align the systems’ vocabularies. We demonstrate the applicability of our solution with a prototype implementation of the framework for a scenario in the maritime safety and security domain

    The Radar Echo Telescope for Cosmic Rays

    Get PDF
    The Radar Echo Telescope for Cosmic Rays (RET-CR) was deployed in May 2023. RET-CR aims to show the in-nature viability of the radar echo method to probe in-ice particle cascades induced by ultra high energy cosmic rays and neutrinos. The RET-CR surface system detects ultra-high-energy cosmic ray air showers impinging on the ice using conventional methods. The surface detector then triggers the in-ice component of RET-CR, that is subsequently used to search for a radar echo off of the in-ice continuation of an ultra high energy cosmic ray air shower. The two systems independently reconstruct the energy, arrival direction, and impact point of the particle cascade. Here we present RET-CR, its installation in Greenland, and the first operations and results of RET-CR

    The Radar Echo Telescope for Neutrinos (RET-N)

    Get PDF
    We present the Radar Echo Telescope for Neutrinos (RET-N). RET-N focuses on the detection of the cosmic neutrino flux above PeV energies by means of the radar detection technique. This method aims to bridge the energy gap between the diffuse neutrino flux detected by IceCube up to a few PeV and the sought for cosmogenic neutrinos at EeV energies by the in-ice Askaryan detectors, as well as the air-shower radio detectors. The radar echo method is based on the detection the ionization trail in the wake of a high-energy neutrino-induced particle cascade in ice. This technique, recently validated in a beam test (T576 at SLAC) is also the basis for the RET-N pathfinder experiment, RET-CR, which is currently under development. Based on the T-576 results, we show that the radar echo method leads to very promising sensitivities to detect cosmic neutrinos in the PeV-EeV region and above. We present the RET-N project and the results of our sensitivity studies

    Toward High Energy Neutrino Detection with the Radar Echo Telescope for Cosmic Rays (RET-CR)

    Get PDF
    The Radar Echo Telescope for Cosmic Rays (RET-CR) is a pathfinder experiment for the Radar Echo Telescope for Neutrinos (RET-N), a next-generation in-ice detection experiment for ultra high energy neutrinos. RET-CR will serve as the testbed for the radar echo method to probe high-energy particle cascades in nature, whereby a transmitted radio signal is reflected from the ionization left in its wake. This method, recently validated at SLAC experiment T576, shows promising preliminary sensitivity to neutrino-induced cascades above the energy range of optical detectors like IceCube. RET-CR intends to use an in-nature test beam: the dense, in-ice cascade produced when the air shower of an ultra high energy cosmic ray impacts a high-elevation ice sheet. This in-ice cascade, orders of magnitude more dense than the in-air shower that preceded it, is similar in profile and density to the expected cascade from a neutrino-induced cascade deep in the ice. RET-CR will be triggered using surface scintillator technology and will be used to develop, test, and deploy the hardware, firmware, and software needed for the eventual RET-N. We present the strategy, status, and design sensitivity of RET-CR, and discuss its application to eventual neutrino detection

    Simulation and Optimisation for the Radar Echo Telescope for Cosmic Rays

    Get PDF
    The SLAC T-576 beam test experiment showed the feasibility of the radar detection technique to probe high-energy particle cascades in dense media. Corresponding particle-level simulations indicate that the radar method has very promising sensitivity to probe the > PeV cosmic neutrino flux. As such, it is crucial to demonstrate the in-situ feasibility of the radar echo method, which is the main goal of the current RET-CR experiment. Although the final goal of the Radar Echo Telescope is to detect cosmic neutrinos, we seek a proof of principle using cosmic-ray air showers penetrating the (high-altitude) Antarctic ice sheet. When an UHECR particle cascade propagates into a high-elevation ice sheet, it produces a dense in-ice cascade of charged particles which can reflect incoming radio waves. Using a surface cosmic-ray detector, the energy and direction of the UHECR can be reconstructed, and as such this constitutes a nearly ideal in-situ test beam to provide the proof of principle for the radar echo technique. RET-CR will consist of a transmitter array, receiver antennas and a surface scintillator plate array. Here we present the simulation efforts for RET-CR performed to optimise the surface array layout and triggering system, which affords an estimate of the expected event rate

    Investigating signal properties of UHE particles using in-ice radar for the RET experiment

    Get PDF
    The Radar Echo Telescope (RET) experiment plans to use the radar technique to detect Ultra-High Energy (UHE) cosmic rays and neutrinos in the polar ice sheets. Whenever an UHE particle collides with an ice molecule, it produces a shower of relativistic particles, which leaves behind an ionization trail. Radio waves can be reflected off this trail and be detected in antennas. It is critical to understand such a radar signal's key properties as that will allow us to do vertex, angular and energy reconstruction of the primary UHE particle. We will discuss various simulation methods, which will fundamentally rely on ray tracing, to recreate the radar signal and test our reconstruction methods

    Application of parabolic equation methods to in-ice radiowave propagation for ultra high energy neutrino detection experiments

    Get PDF
    Many ultra-high-energy neutrino-detection experiments seek radio wave signals from neutrino interactions deep within the polar ice, and an understanding of in-ice radio wave propagation is therefore of critical importance. The parabolic equation (PE) method for modeling the propagation of radio waves is a suitable intermediate between ray tracing and finite-difference time domain (FDTD) methods in terms of accuracy and computation time. The RET collaboration has developed the first modification of the PE method for use in modeling in-ice radio wave propagation for ultra high energy cosmic ray and neutrino detection experiments. In this proceeding we will detail the motivation for the development of this technique, the process by which it was modified for in-ice use, and showcase the accuracy of its results by comparing to FDTD and ray tracing

    Modeling in-ice radio propagation with parabolic equation methods

    Full text link
    We investigate the use of parabolic equation (PE) methods for solving radio-wave propagation in polar ice. PE methods provide an approximate solution to Maxwell's equations, in contrast to full-field solutions such as finite-difference-time-domain (FDTD) methods, yet provide a more complete model of propagation than simple geometric ray-tracing (RT) methods that are the current state of the art for simulating in-ice radio detection of neutrino-induced cascades. PE are more computationally efficient than FDTD methods, and more flexible than RT methods, allowing for the inclusion of diffractive effects, and modeling of propagation in regions that cannot be modeled with geometric methods. We present a new PE approximation suited to the in-ice case. We conclude that current ray-tracing methods may be too simplistic in their treatment of ice properties, and their continued use could overestimate experimental sensitivity for in-ice neutrino detection experiments. We discuss the implications for current in-ice Askaryan-type detectors and for the upcoming Radar Echo Telescope; two families of experiments for which these results are most relevant. We suggest that PE methods be investigated further for in-ice radio applications

    MARES: A macroscopic approach to the radar echo scatter from high-energy particle cascades

    Full text link
    In this work, we provide a macroscopic model to predict the radar echo signatures found when a radio signal is reflected from a cosmic-ray or neutrino-induced particle cascade propagating in a dense medium like ice. Its macroscopic nature allows for an energy independent runtime, taking less than 10 s for simulating a single scatter event. As a first application, we discuss basic signal properties and simulate the expected signal for the T-576 beam-test experiment at the Stanford Linear Accelerator Center (SLAC). We find good signal strength agreement with the only observed radar echo from a high-energy particle cascade to date.Comment: To be submitte
    corecore